Source code for holoviews.plotting.bokeh.raster

from __future__ import absolute_import, division, unicode_literals

import numpy as np
import param

from bokeh.models import DatetimeAxis, CustomJSHover

from ...core.util import cartesian_product, dimension_sanitizer, isfinite
from ...element import Raster
from .element import ElementPlot, ColorbarPlot
from .selection import BokehOverlaySelectionDisplay
from .styles import base_properties, fill_properties, line_properties, mpl_to_bokeh
from .util import colormesh


[docs]class RasterPlot(ColorbarPlot): clipping_colors = param.Dict(default={'NaN': 'transparent'}) padding = param.ClassSelector(default=0, class_=(int, float, tuple)) show_legend = param.Boolean(default=False, doc=""" Whether to show legend for the plot.""") style_opts = base_properties + ['cmap', 'alpha'] _nonvectorized_styles = style_opts _plot_methods = dict(single='image') selection_display = BokehOverlaySelectionDisplay() def _hover_opts(self, element): xdim, ydim = element.kdims tooltips = [(xdim.pprint_label, '$x'), (ydim.pprint_label, '$y')] vdims = element.vdims tooltips.append((vdims[0].pprint_label, '@image')) for vdim in vdims[1:]: vname = dimension_sanitizer(vdim.name) tooltips.append((vdim.pprint_label, '@{0}'.format(vname))) return tooltips, {} def _postprocess_hover(self, renderer, source): super(RasterPlot, self)._postprocess_hover(renderer, source) hover = self.handles.get('hover') if not (hover and isinstance(hover.tooltips, list)): return element = self.current_frame xdim, ydim = [dimension_sanitizer(kd.name) for kd in element.kdims] xaxis = self.handles['xaxis'] yaxis = self.handles['yaxis'] code = """ var {ax} = special_vars.{ax}; var date = new Date({ax}); return date.toISOString().slice(0, 19).replace('T', ' ') """ tooltips, formatters = [], dict(hover.formatters) for (name, formatter) in hover.tooltips: if isinstance(xaxis, DatetimeAxis) and formatter == '$x': xhover = CustomJSHover(code=code.format(ax='x')) formatters['$x'] = xhover formatter += '{custom}' if isinstance(yaxis, DatetimeAxis) and formatter == '$y': yhover = CustomJSHover(code=code.format(ax='y')) formatters['$y'] = yhover formatter += '{custom}' tooltips.append((name, formatter)) hover.tooltips = tooltips hover.formatters = formatters def __init__(self, *args, **kwargs): super(RasterPlot, self).__init__(*args, **kwargs) if self.hmap.type == Raster: self.invert_yaxis = not self.invert_yaxis
[docs] def get_data(self, element, ranges, style): mapping = dict(image='image', x='x', y='y', dw='dw', dh='dh') val_dim = element.vdims[0] style['color_mapper'] = self._get_colormapper(val_dim, element, ranges, style) if 'alpha' in style: style['global_alpha'] = style['alpha'] if self.static_source: return {}, mapping, style if type(element) is Raster: l, b, r, t = element.extents if self.invert_axes: l, b, r, t = b, l, t, r else: l, b, r, t = element.bounds.lbrt() if self.invert_axes: l, b, r, t = b, l, t, r dh, dw = t-b, r-l if self.invert_xaxis: l, r = r, l if self.invert_yaxis: b, t = t, b data = dict(x=[l], y=[b], dw=[dw], dh=[dh]) for i, vdim in enumerate(element.vdims, 2): if i > 2 and 'hover' not in self.handles: break img = element.dimension_values(i, flat=False) if img.dtype.kind == 'b': img = img.astype(np.int8) if 0 in img.shape: img = np.array([[np.NaN]]) if ((self.invert_axes and not type(element) is Raster) or (not self.invert_axes and type(element) is Raster)): img = img.T if self.invert_xaxis: img = img[:, ::-1] if self.invert_yaxis: img = img[::-1] key = 'image' if i == 2 else dimension_sanitizer(vdim.name) data[key] = [img] return (data, mapping, style)
[docs]class RGBPlot(ElementPlot): padding = param.ClassSelector(default=0, class_=(int, float, tuple)) style_opts = ['alpha'] + base_properties _nonvectorized_styles = style_opts _plot_methods = dict(single='image_rgba') selection_display = BokehOverlaySelectionDisplay() def _hover_opts(self, element): xdim, ydim = element.kdims return [(xdim.pprint_label, '$x'), (ydim.pprint_label, '$y'), ('RGBA', '@image')], {}
[docs] def get_data(self, element, ranges, style): mapping = dict(image='image', x='x', y='y', dw='dw', dh='dh') if 'alpha' in style: style['global_alpha'] = style['alpha'] if self.static_source: return {}, mapping, style img = np.dstack([element.dimension_values(d, flat=False) for d in element.vdims]) if img.ndim == 3: if img.dtype.kind == 'f': img = img*255 if img.size and (img.min() < 0 or img.max() > 255): self.param.warning('Clipping input data to the valid ' 'range for RGB data ([0..1] for ' 'floats or [0..255] for integers).') img = np.clip(img, 0, 255) if img.dtype.name != 'uint8': img = img.astype(np.uint8) if img.shape[2] == 3: # alpha channel not included alpha = np.full(img.shape[:2], 255, dtype='uint8') img = np.dstack([img, alpha]) N, M, _ = img.shape #convert image NxM dtype=uint32 if not img.flags['C_CONTIGUOUS']: img = img.copy() img = img.view(dtype=np.uint32).reshape((N, M)) # Ensure axis inversions are handled correctly l, b, r, t = element.bounds.lbrt() if self.invert_axes: img = img.T l, b, r, t = b, l, t, r dh, dw = t-b, r-l if self.invert_xaxis: l, r = r, l img = img[:, ::-1] if self.invert_yaxis: img = img[::-1] b, t = t, b if 0 in img.shape: img = np.zeros((1, 1), dtype=np.uint32) data = dict(image=[img], x=[l], y=[b], dw=[dw], dh=[dh]) return (data, mapping, style)
[docs]class HSVPlot(RGBPlot):
[docs] def get_data(self, element, ranges, style): return super(HSVPlot, self).get_data(element.rgb, ranges, style)
[docs]class QuadMeshPlot(ColorbarPlot): clipping_colors = param.Dict(default={'NaN': 'transparent'}) padding = param.ClassSelector(default=0, class_=(int, float, tuple)) show_legend = param.Boolean(default=False, doc=""" Whether to show legend for the plot.""") selection_display = BokehOverlaySelectionDisplay() style_opts = ['cmap'] + base_properties + line_properties + fill_properties _nonvectorized_styles = style_opts _plot_methods = dict(single='quad')
[docs] def get_data(self, element, ranges, style): x, y, z = element.dimensions()[:3] if self.invert_axes: x, y = y, x cmapper = self._get_colormapper(z, element, ranges, style) cmapper = {'field': z.name, 'transform': cmapper} irregular = (element.interface.irregular(element, x) or element.interface.irregular(element, y)) if irregular: mapping = dict(xs='xs', ys='ys', fill_color=cmapper) else: mapping = {'left': 'left', 'right': 'right', 'fill_color': cmapper, 'top': 'top', 'bottom': 'bottom'} if self.static_source: return {}, mapping, style x, y = dimension_sanitizer(x.name), dimension_sanitizer(y.name) zdata = element.dimension_values(z, flat=False) if irregular: dims = element.kdims if self.invert_axes: dims = dims[::-1] X, Y = [element.interface.coords(element, d, expanded=True, edges=True) for d in dims] X, Y = colormesh(X, Y) zvals = zdata.T.flatten() if self.invert_axes else zdata.flatten() XS, YS = [], [] mask = [] xc, yc = [], [] for xs, ys, zval in zip(X, Y, zvals): xs, ys = xs[:-1], ys[:-1] if isfinite(zval) and all(isfinite(xs)) and all(isfinite(ys)): XS.append(list(xs)) YS.append(list(ys)) mask.append(True) if 'hover' in self.handles: xc.append(xs.mean()) yc.append(ys.mean()) else: mask.append(False) data = {'xs': XS, 'ys': YS, z.name: zvals[np.array(mask)]} if 'hover' in self.handles: data[x] = np.array(xc) data[y] = np.array(yc) else: xc, yc = (element.interface.coords(element, x, edges=True, ordered=True), element.interface.coords(element, y, edges=True, ordered=True)) x0, y0 = cartesian_product([xc[:-1], yc[:-1]], copy=True) x1, y1 = cartesian_product([xc[1:], yc[1:]], copy=True) zvals = zdata.flatten() if self.invert_axes else zdata.T.flatten() data = {'left': x0, 'right': x1, dimension_sanitizer(z.name): zvals, 'bottom': y0, 'top': y1} if 'hover' in self.handles and not self.static_source: hover_dims = element.dimensions()[3:] hover_data = [element.dimension_values(hover_dim, flat=False) for hover_dim in hover_dims] for hdim, hdat in zip(hover_dims, hover_data): data[dimension_sanitizer(hdim.name)] = (hdat.flatten() if self.invert_axes else hdat.T.flatten()) data[x] = element.dimension_values(x) data[y] = element.dimension_values(y) return data, mapping, style
def _init_glyph(self, plot, mapping, properties): """ Returns a Bokeh glyph object. """ properties = mpl_to_bokeh(properties) properties = dict(properties, **mapping) if 'xs' in mapping: renderer = plot.patches(**properties) else: renderer = plot.quad(**properties) if self.colorbar and 'color_mapper' in self.handles: self._draw_colorbar(plot, self.handles['color_mapper']) return renderer, renderer.glyph