from __future__ import absolute_import, division, unicode_literals
import types
import param
import numpy as np
try:
from bokeh.util.hex import cartesian_to_axial
except:
cartesian_to_axial = None
from ...core import Dimension, Operation
from ...core.options import Compositor
from ...core.util import basestring, isfinite
from ...element import HexTiles
from ...util.transform import dim as dim_transform
from .element import ColorbarPlot
from .selection import BokehOverlaySelectionDisplay
from .styles import base_properties, line_properties, fill_properties
[docs]class hex_binning(Operation):
"""
Applies hex binning by computing aggregates on a hexagonal grid.
Should not be user facing as the returned element is not directly
useable.
"""
aggregator = param.ClassSelector(
default=np.size, class_=(types.FunctionType, tuple), doc="""
Aggregation function or dimension transform used to compute bin
values. Defaults to np.size to count the number of values
in each bin.""")
gridsize = param.ClassSelector(default=50, class_=(int, tuple))
invert_axes = param.Boolean(default=False)
min_count = param.Number(default=None)
orientation = param.ObjectSelector(default='pointy', objects=['flat', 'pointy'])
def _process(self, element, key=None):
gridsize, aggregator, orientation = self.p.gridsize, self.p.aggregator, self.p.orientation
# Determine sampling
indexes = [1, 0] if self.p.invert_axes else [0, 1]
(x0, x1), (y0, y1) = (element.range(i) for i in indexes)
if isinstance(gridsize, tuple):
sx, sy = gridsize
else:
sx, sy = gridsize, gridsize
xsize = ((x1-x0)/sx)*(2.0/3.0)
ysize = ((y1-y0)/sy)*(2.0/3.0)
size = xsize if self.orientation == 'flat' else ysize
if isfinite(ysize) and isfinite(xsize) and not xsize == 0:
scale = ysize/xsize
else:
scale = 1
# Compute hexagonal coordinates
x, y = (element.dimension_values(i) for i in indexes)
if not len(x):
return element.clone([])
finite = isfinite(x) & isfinite(y)
x, y = x[finite], y[finite]
q, r = cartesian_to_axial(x, y, size, orientation+'top', scale)
coords = q, r
# Get aggregation values
if aggregator is np.size:
aggregator = np.sum
values = (np.full_like(q, 1),)
vdims = ['Count']
elif not element.vdims:
raise ValueError('HexTiles aggregated by value must '
'define a value dimensions.')
else:
vdims = element.vdims
values = tuple(element.dimension_values(vdim) for vdim in vdims)
# Construct aggregate
data = coords + values
xd, yd = (element.get_dimension(i) for i in indexes)
xd, yd = xd.clone(range=(x0, x1)), yd.clone(range=(y0, y1))
kdims = [yd, xd] if self.p.invert_axes else [xd, yd]
agg = (
element.clone(data, kdims=kdims, vdims=vdims)
.aggregate(function=aggregator)
)
if self.p.min_count is not None and self.p.min_count > 1:
agg = agg[:, :, self.p.min_count:]
return agg
compositor = Compositor(
"HexTiles", hex_binning, None, 'data', output_type=HexTiles,
transfer_options=True, transfer_parameters=True, backends=['bokeh']
)
Compositor.register(compositor)
[docs]class HexTilesPlot(ColorbarPlot):
aggregator = param.ClassSelector(
default=np.size, class_=(types.FunctionType, tuple), doc="""
Aggregation function or dimension transform used to compute
bin values. Defaults to np.size to count the number of values
in each bin.""")
gridsize = param.ClassSelector(default=50, class_=(int, tuple), doc="""
Number of hexagonal bins along x- and y-axes. Defaults to uniform
sampling along both axes when setting and integer but independent
bin sampling can be specified a tuple of integers corresponding to
the number of bins along each axis.""")
min_count = param.Number(default=None, doc="""
The display threshold before a bin is shown, by default bins with
a count of less than 1 are hidden.""")
orientation = param.ObjectSelector(default='pointy', objects=['flat', 'pointy'],
doc="""
The orientation of hexagon bins. By default the pointy side is on top.""")
# Deprecated options
color_index = param.ClassSelector(default=2, class_=(basestring, int),
allow_None=True, doc="""
Deprecated in favor of color style mapping, e.g. `color=dim('color')`""")
max_scale = param.Number(default=0.9, bounds=(0, None), doc="""
When size_index is enabled this defines the maximum size of each
bin relative to uniform tile size, i.e. for a value of 1, the
largest bin will match the size of bins when scaling is disabled.
Setting value larger than 1 will result in overlapping bins.""")
min_scale = param.Number(default=0, bounds=(0, None), doc="""
When size_index is enabled this defines the minimum size of each
bin relative to uniform tile size, i.e. for a value of 1, the
smallest bin will match the size of bins when scaling is disabled.
Setting value larger than 1 will result in overlapping bins.""")
size_index = param.ClassSelector(default=None, class_=(basestring, int),
allow_None=True, doc="""
Index of the dimension from which the sizes will the drawn.""")
selection_display = BokehOverlaySelectionDisplay()
style_opts = base_properties + line_properties + fill_properties + ['cmap', 'scale']
_nonvectorized_styles = base_properties + ['cmap', 'line_dash']
_plot_methods = dict(single='hex_tile')
[docs] def get_extents(self, element, ranges, range_type='combined'):
xdim, ydim = element.kdims[:2]
ranges[xdim.name]['data'] = xdim.range
ranges[ydim.name]['data'] = ydim.range
xdim, ydim = element.dataset.kdims[:2]
if xdim.name in ranges:
ranges[xdim.name]['hard'] = xdim.range
if ydim.name in ranges:
ranges[ydim.name]['hard'] = ydim.range
return super(HexTilesPlot, self).get_extents(element, ranges, range_type)
def _hover_opts(self, element):
if self.aggregator is np.size:
dims = [Dimension('Count')]
else:
dims = element.vdims
return dims, {}
[docs] def get_data(self, element, ranges, style):
mapping = {'q': 'q', 'r': 'r'}
if not len(element):
data = {'q': [], 'r': []}
return data, mapping, style
q, r = (element.dimension_values(i) for i in range(2))
x, y = element.kdims[::-1] if self.invert_axes else element.kdims
(x0, x1), (y0, y1) = x.range, y.range
if isinstance(self.gridsize, tuple):
sx, sy = self.gridsize
else:
sx, sy = self.gridsize, self.gridsize
xsize = ((x1-x0)/sx)*(2.0/3.0)
ysize = ((y1-y0)/sy)*(2.0/3.0)
size = xsize if self.orientation == 'flat' else ysize
scale = ysize/xsize
data = {'q': q, 'r': r}
cdata, cmapping = self._get_color_data(element, ranges, style)
data.update(cdata)
mapping.update(cmapping)
if self.min_count is not None and self.min_count <= 0:
cmapper = cmapping['color']['transform']
cmapper.low = self.min_count
self.state.background_fill_color = cmapper.palette[0]
self._get_hover_data(data, element, element.vdims)
style['orientation'] = self.orientation+'top'
style['size'] = size
style['aspect_scale'] = scale
scale_dim = element.get_dimension(self.size_index)
scale = style.get('scale')
if (scale_dim and ((isinstance(scale, basestring) and scale in element) or
isinstance(scale, dim_transform))):
self.param.warning("Cannot declare style mapping for 'scale' option "
"and declare a size_index; ignoring the size_index.")
scale_dim = None
if scale_dim is not None:
sizes = element.dimension_values(scale_dim)
if self.aggregator is np.size:
ptp = sizes.max()
baseline = 0
else:
ptp = sizes.ptp()
baseline = sizes.min()
if self.min_scale > self.max_scale:
raise ValueError('min_scale parameter must be smaller '
'than max_scale parameter.')
scale = self.max_scale - self.min_scale
mapping['scale'] = 'scale'
data['scale'] = (((sizes - baseline) / ptp) * scale) + self.min_scale
return data, mapping, style