from __future__ import absolute_import, division, unicode_literals
import param
import numpy as np
from ...core import CompositeOverlay, Element
from ...core import traversal
from ...core.util import match_spec, max_range, unique_iterator
from ...element.raster import Image, Raster, RGB
from .element import ElementPlot, ColorbarPlot, OverlayPlot
from .plot import MPLPlot, GridPlot, mpl_rc_context
from .util import get_raster_array, mpl_version
[docs]class RasterBasePlot(ElementPlot):
aspect = param.Parameter(default='equal', doc="""
Raster elements respect the aspect ratio of the
Images by default but may be set to an explicit
aspect ratio or to 'square'.""")
padding = param.ClassSelector(default=0, class_=(int, float, tuple))
show_legend = param.Boolean(default=False, doc="""
Whether to show legend for the plot.""")
situate_axes = param.Boolean(default=True, doc="""
Whether to situate the image relative to other plots. """)
_plot_methods = dict(single='imshow')
[docs] def get_extents(self, element, ranges, range_type='combined'):
extents = super(RasterBasePlot, self).get_extents(element, ranges, range_type)
if self.situate_axes or range_type not in ('combined', 'data'):
return extents
else:
if isinstance(element, Image):
return element.bounds.lbrt()
else:
return element.extents
def _compute_ticks(self, element, ranges):
return None, None
[docs]class RasterPlot(RasterBasePlot, ColorbarPlot):
clipping_colors = param.Dict(default={'NaN': 'transparent'})
style_opts = ['alpha', 'cmap', 'interpolation', 'visible',
'filterrad', 'clims', 'norm']
def __init__(self, *args, **kwargs):
super(RasterPlot, self).__init__(*args, **kwargs)
if self.hmap.type == Raster:
self.invert_yaxis = not self.invert_yaxis
def get_data(self, element, ranges, style):
xticks, yticks = self._compute_ticks(element, ranges)
if isinstance(element, RGB):
style.pop('cmap', None)
data = get_raster_array(element)
if type(element) is Raster:
l, b, r, t = element.extents
if self.invert_axes:
data = data[:, ::-1]
else:
data = data[::-1]
else:
l, b, r, t = element.bounds.lbrt()
if self.invert_axes:
data = data[::-1, ::-1]
if self.invert_axes:
data = data.transpose([1, 0, 2]) if isinstance(element, RGB) else data.T
l, b, r, t = b, l, t, r
vdim = element.vdims[0]
self._norm_kwargs(element, ranges, style, vdim)
style['extent'] = [l, r, b, t]
style['origin'] = 'upper'
return [data], style, {'xticks': xticks, 'yticks': yticks}
[docs] def update_handles(self, key, axis, element, ranges, style):
im = self.handles['artist']
data, style, axis_kwargs = self.get_data(element, ranges, style)
l, r, b, t = style['extent']
im.set_data(data[0])
im.set_extent((l, r, b, t))
im.set_clim((style['vmin'], style['vmax']))
if 'norm' in style:
im.norm = style['norm']
return axis_kwargs
[docs]class RGBPlot(RasterBasePlot):
style_opts = ['alpha', 'interpolation', 'visible', 'filterrad']
def get_data(self, element, ranges, style):
xticks, yticks = self._compute_ticks(element, ranges)
data = get_raster_array(element)
l, b, r, t = element.bounds.lbrt()
if self.invert_axes:
data = data[::-1, ::-1]
data = data.transpose([1, 0, 2])
l, b, r, t = b, l, t, r
style['extent'] = [l, r, b, t]
style['origin'] = 'upper'
return [data], style, {'xticks': xticks, 'yticks': yticks}
[docs] def update_handles(self, key, axis, element, ranges, style):
im = self.handles['artist']
data, style, axis_kwargs = self.get_data(element, ranges, style)
l, r, b, t = style['extent']
im.set_data(data[0])
im.set_extent((l, r, b, t))
return axis_kwargs
[docs]class QuadMeshPlot(ColorbarPlot):
clipping_colors = param.Dict(default={'NaN': 'transparent'})
padding = param.ClassSelector(default=0, class_=(int, float, tuple))
show_legend = param.Boolean(default=False, doc="""
Whether to show legend for the plot.""")
style_opts = ['alpha', 'cmap', 'clims', 'edgecolors', 'norm', 'shading',
'linestyles', 'linewidths', 'hatch', 'visible']
_plot_methods = dict(single='pcolormesh')
def get_data(self, element, ranges, style):
zdata = element.dimension_values(2, flat=False)
data = np.ma.array(zdata, mask=np.logical_not(np.isfinite(zdata)))
expanded = element.interface.irregular(element, element.kdims[0])
edges = style.get('shading') != 'gouraud'
coords = [element.interface.coords(element, d, ordered=True,
expanded=expanded, edges=edges)
for d in element.kdims]
if self.invert_axes:
coords = coords[::-1]
data = data.T
cmesh_data = coords + [data]
if expanded:
style['locs'] = np.concatenate(coords)
vdim = element.vdims[0]
self._norm_kwargs(element, ranges, style, vdim)
return tuple(cmesh_data), style, {}
[docs] def init_artists(self, ax, plot_args, plot_kwargs):
locs = plot_kwargs.pop('locs', None)
artist = ax.pcolormesh(*plot_args, **plot_kwargs)
colorbar = self.handles.get('cbar')
if colorbar and mpl_version < '3.1':
colorbar.set_norm(artist.norm)
if hasattr(colorbar, 'set_array'):
# Compatibility with mpl < 3
colorbar.set_array(artist.get_array())
colorbar.set_clim(artist.get_clim())
colorbar.update_normal(artist)
elif colorbar:
colorbar.update_normal(artist)
return {'artist': artist, 'locs': locs}
[docs]class RasterGridPlot(GridPlot, OverlayPlot):
"""
RasterGridPlot evenly spaces out plots of individual projections on
a grid, even when they differ in size. Since this class uses a single
axis to generate all the individual plots it is much faster than the
equivalent using subplots.
"""
padding = param.Number(default=0.1, doc="""
The amount of padding as a fraction of the total Grid size""")
# Parameters inherited from OverlayPlot that are not part of the
# GridPlot interface. Some of these may be enabled in future in
# conjunction with GridPlot.
apply_extents = param.Parameter(precedence=-1)
apply_ranges = param.Parameter(precedence=-1)
apply_ticks = param.Parameter(precedence=-1)
batched = param.Parameter(precedence=-1)
bgcolor = param.Parameter(precedence=-1)
data_aspect = param.Parameter(precedence=-1)
default_span = param.Parameter(precedence=-1)
hooks = param.Parameter(precedence=-1)
finalize_hooks = param.Parameter(precedence=-1)
invert_axes = param.Parameter(precedence=-1)
invert_xaxis = param.Parameter(precedence=-1)
invert_yaxis = param.Parameter(precedence=-1)
invert_zaxis = param.Parameter(precedence=-1)
labelled = param.Parameter(precedence=-1)
legend_cols = param.Parameter(precedence=-1)
legend_position = param.Parameter(precedence=-1)
legend_opts = param.Parameter(precedence=-1)
legend_limit = param.Parameter(precedence=-1)
logx = param.Parameter(precedence=-1)
logy = param.Parameter(precedence=-1)
logz = param.Parameter(precedence=-1)
show_grid = param.Parameter(precedence=-1)
style_grouping = param.Parameter(precedence=-1)
xlim = param.Parameter(precedence=-1)
ylim = param.Parameter(precedence=-1)
zlim = param.Parameter(precedence=-1)
xticks = param.Parameter(precedence=-1)
xformatter = param.Parameter(precedence=-1)
yticks = param.Parameter(precedence=-1)
yformatter = param.Parameter(precedence=-1)
zticks = param.Parameter(precedence=-1)
zaxis = param.Parameter(precedence=-1)
zrotation = param.Parameter(precedence=-1)
zformatter = param.Parameter(precedence=-1)
xlabel = param.Parameter(precedence=-1)
ylabel = param.Parameter(precedence=-1)
zlabel = param.Parameter(precedence=-1)
def __init__(self, layout, keys=None, dimensions=None, create_axes=False, ranges=None,
layout_num=1, **params):
self.top_level = keys is None
if self.top_level:
dimensions, keys = traversal.unique_dimkeys(layout)
MPLPlot.__init__(self, dimensions=dimensions, keys=keys, **params)
self.layout = layout
self.cyclic_index = 0
self.zorder = 0
self.layout_num = layout_num
self.overlaid = False
self.hmap = layout
if layout.ndims > 1:
xkeys, ykeys = zip(*layout.keys())
else:
xkeys = layout.keys()
ykeys = [None]
self._xkeys = list(dict.fromkeys(xkeys))
self._ykeys = list(dict.fromkeys(ykeys))
self._xticks, self._yticks = [], []
self.rows, self.cols = layout.shape
self.fig_inches = self._get_size()
_, _, self.layout = self._create_subplots(layout, None, ranges, create_axes=False)
self.border_extents = self._compute_borders()
width, height, _, _, _, _ = self.border_extents
if self.aspect == 'equal':
self.aspect = float(width/height)
# Note that streams are not supported on RasterGridPlot
# until that is implemented this stub is needed
self.streams = []
def _finalize_artist(self, key):
pass
[docs] def get_extents(self, view, ranges, range_type='combined'):
if range_type == 'hard':
return (np.nan,)*4
width, height, _, _, _, _ = self.border_extents
return (0, 0, width, height)
def _get_frame(self, key):
return GridPlot._get_frame(self, key)
@mpl_rc_context
def initialize_plot(self, ranges=None):
_, _, b_w, b_h, widths, heights = self.border_extents
key = self.keys[-1]
ranges = self.compute_ranges(self.layout, key, ranges)
self.handles['projs'] = {}
x, y = b_w, b_h
for xidx, xkey in enumerate(self._xkeys):
w = widths[xidx]
for yidx, ykey in enumerate(self._ykeys):
h = heights[yidx]
if self.layout.ndims > 1:
vmap = self.layout.get((xkey, ykey), None)
else:
vmap = self.layout.get(xkey, None)
pane = vmap.select(**{d.name: val for d, val in zip(self.dimensions, key)
if d in vmap.kdims})
pane = vmap.last.values()[-1] if issubclass(vmap.type, CompositeOverlay) else vmap.last
data = get_raster_array(pane) if pane else None
ranges = self.compute_ranges(vmap, key, ranges)
opts = self.lookup_options(pane, 'style')[self.cyclic_index]
plot = self.handles['axis'].imshow(data, extent=(x,x+w, y, y+h), **opts)
cdim = pane.vdims[0].name
valrange = match_spec(pane, ranges).get(cdim, pane.range(cdim))['combined']
plot.set_clim(valrange)
if data is None:
plot.set_visible(False)
self.handles['projs'][(xkey, ykey)] = plot
y += h + b_h
if xidx == 0:
self._yticks.append(y-b_h-h/2.)
y = b_h
x += w + b_w
self._xticks.append(x-b_w-w/2.)
kwargs = self._get_axis_kwargs()
return self._finalize_axis(key, ranges=ranges, **kwargs)
@mpl_rc_context
def update_frame(self, key, ranges=None):
grid = self._get_frame(key)
ranges = self.compute_ranges(self.layout, key, ranges)
for xkey in self._xkeys:
for ykey in self._ykeys:
plot = self.handles['projs'][(xkey, ykey)]
grid_key = (xkey, ykey) if self.layout.ndims > 1 else (xkey,)
element = grid.data.get(grid_key, None)
if element:
plot.set_visible(True)
img = element.values()[0] if isinstance(element, CompositeOverlay) else element
data = get_raster_array(img)
plot.set_data(data)
else:
plot.set_visible(False)
kwargs = self._get_axis_kwargs()
return self._finalize_axis(key, ranges=ranges, **kwargs)
def _get_axis_kwargs(self):
xdim = self.layout.kdims[0]
ydim = self.layout.kdims[1] if self.layout.ndims > 1 else None
xticks = (self._xticks, [xdim.pprint_value(l) for l in self._xkeys])
yticks = (self._yticks, [ydim.pprint_value(l) if ydim else ''
for l in self._ykeys])
return dict(dimensions=[xdim, ydim], xticks=xticks, yticks=yticks)
def _compute_borders(self):
ndims = self.layout.ndims
width_fn = lambda x: x.range(0)
height_fn = lambda x: x.range(1)
width_extents = [max_range(self.layout[x, :].traverse(width_fn, [Element]))
for x in unique_iterator(self.layout.dimension_values(0))]
if ndims > 1:
height_extents = [max_range(self.layout[:, y].traverse(height_fn, [Element]))
for y in unique_iterator(self.layout.dimension_values(1))]
else:
height_extents = [max_range(self.layout.traverse(height_fn, [Element]))]
widths = [extent[0]-extent[1] for extent in width_extents]
heights = [extent[0]-extent[1] for extent in height_extents]
width, height = np.sum(widths), np.sum(heights)
border_width = (width*self.padding)/(len(widths)+1)
border_height = (height*self.padding)/(len(heights)+1)
width += width*self.padding
height += height*self.padding
return width, height, border_width, border_height, widths, heights
def __len__(self):
return max([len(self.keys), 1])