import param
import numpy as np
from ..core import Dimension, Dataset, NdOverlay
from ..core.operation import Operation
from ..core.util import basestring, cartesian_product, isfinite
from ..element import (Curve, Area, Image, Distribution, Bivariate,
Contours, Polygons)
from .element import contours
def _kde_support(bin_range, bw, gridsize, cut, clip):
"""Establish support for a kernel density estimate."""
kmin, kmax = bin_range[0] - bw * cut, bin_range[1] + bw * cut
if isfinite(clip[0]):
kmin = max(kmin, clip[0])
if isfinite(clip[1]):
kmax = min(kmax, clip[1])
return np.linspace(kmin, kmax, gridsize)
[docs]class univariate_kde(Operation):
"""
Computes a 1D kernel density estimate (KDE) along the supplied
dimension. Kernel density estimation is a non-parametric way to
estimate the probability density function of a random variable.
The KDE works by placing a Gaussian kernel at each sample with
the supplied bandwidth. These kernels are then summed to produce
the density estimate. By default a good bandwidth is determined
using the bw_method but it may be overridden by an explicit value.
"""
bw_method = param.ObjectSelector(default='scott', objects=['scott', 'silverman'], doc="""
Method of automatically determining KDE bandwidth""")
bandwidth = param.Number(default=None, doc="""
Allows supplying explicit bandwidth value rather than relying on scott or silverman method.""")
cut = param.Number(default=3, doc="""
Draw the estimate to cut * bw from the extreme data points.""")
bin_range = param.NumericTuple(default=None, length=2, doc="""
Specifies the range within which to compute the KDE.""")
dimension = param.String(default=None, doc="""
Along which dimension of the Element to compute the KDE.""")
filled = param.Boolean(default=True, doc="""
Controls whether to return filled or unfilled KDE.""")
n_samples = param.Integer(default=100, doc="""
Number of samples to compute the KDE over.""")
groupby = param.ClassSelector(default=None, class_=(basestring, Dimension), doc="""
Defines a dimension to group the Histogram returning an NdOverlay of Histograms.""")
_per_element = True
def _process(self, element, key=None):
if self.p.groupby:
if not isinstance(element, Dataset):
raise ValueError('Cannot use histogram groupby on non-Dataset Element')
grouped = element.groupby(self.p.groupby, group_type=Dataset, container_type=NdOverlay)
self.p.groupby = None
return grouped.map(self._process, Dataset)
try:
from scipy import stats
from scipy.linalg import LinAlgError
except ImportError:
raise ImportError('%s operation requires SciPy to be installed.' % type(self).__name__)
params = {}
if isinstance(element, Distribution):
selected_dim = element.kdims[0]
if element.group != type(element).__name__:
params['group'] = element.group
params['label'] = element.label
vdim = element.vdims[0]
vdim_name = '{}_density'.format(selected_dim.name)
vdims = [vdim.clone(vdim_name, label='Density') if vdim.name == 'Density' else vdim]
else:
if self.p.dimension:
selected_dim = element.get_dimension(self.p.dimension)
else:
dimensions = element.vdims+element.kdims
if not dimensions:
raise ValueError("%s element does not declare any dimensions "
"to compute the kernel density estimate on." %
type(element).__name__)
selected_dim = dimensions[0]
vdim_name = '{}_density'.format(selected_dim.name)
vdims = [Dimension(vdim_name, label='Density')]
data = element.dimension_values(selected_dim)
bin_range = self.p.bin_range or element.range(selected_dim)
if bin_range == (0, 0) or any(not isfinite(r) for r in bin_range):
bin_range = (0, 1)
elif bin_range[0] == bin_range[1]:
bin_range = (bin_range[0]-0.5, bin_range[1]+0.5)
element_type = Area if self.p.filled else Curve
data = data[isfinite(data)] if len(data) else []
if len(data) > 1:
try:
kde = stats.gaussian_kde(data)
except LinAlgError:
return element_type([], selected_dim, vdims, **params)
if self.p.bandwidth:
kde.set_bandwidth(self.p.bandwidth)
bw = kde.scotts_factor() * data.std(ddof=1)
if self.p.bin_range:
xs = np.linspace(bin_range[0], bin_range[1], self.p.n_samples)
else:
xs = _kde_support(bin_range, bw, self.p.n_samples, self.p.cut, selected_dim.range)
ys = kde.evaluate(xs)
else:
xs = np.linspace(bin_range[0], bin_range[1], self.p.n_samples)
ys = np.full_like(xs, 0)
return element_type((xs, ys), kdims=[selected_dim], vdims=vdims, **params)
[docs]class bivariate_kde(Operation):
"""
Computes a 2D kernel density estimate (KDE) of the first two
dimensions in the input data. Kernel density estimation is a
non-parametric way to estimate the probability density function of
a random variable.
The KDE works by placing 2D Gaussian kernel at each sample with
the supplied bandwidth. These kernels are then summed to produce
the density estimate. By default a good bandwidth is determined
using the bw_method but it may be overridden by an explicit value.
"""
contours = param.Boolean(default=True, doc="""
Whether to compute contours from the KDE, determines whether to
return an Image or Contours/Polygons.""")
bw_method = param.ObjectSelector(default='scott', objects=['scott', 'silverman'], doc="""
Method of automatically determining KDE bandwidth""")
bandwidth = param.Number(default=None, doc="""
Allows supplying explicit bandwidth value rather than relying
on scott or silverman method.""")
cut = param.Number(default=3, doc="""
Draw the estimate to cut * bw from the extreme data points.""")
filled = param.Boolean(default=False, doc="""
Controls whether to return filled or unfilled contours.""")
levels = param.ClassSelector(default=10, class_=(list, int), doc="""
A list of scalar values used to specify the contour levels.""")
n_samples = param.Integer(default=100, doc="""
Number of samples to compute the KDE over.""")
x_range = param.NumericTuple(default=None, length=2, doc="""
The x_range as a tuple of min and max x-value. Auto-ranges
if set to None.""")
y_range = param.NumericTuple(default=None, length=2, doc="""
The x_range as a tuple of min and max y-value. Auto-ranges
if set to None.""")
_per_element = True
def _process(self, element, key=None):
try:
from scipy import stats
except ImportError:
raise ImportError('%s operation requires SciPy to be installed.' % type(self).__name__)
if len(element.dimensions()) < 2:
raise ValueError("bivariate_kde can only be computed on elements "
"declaring at least two dimensions.")
xdim, ydim = element.dimensions()[:2]
params = {}
if isinstance(element, Bivariate):
if element.group != type(element).__name__:
params['group'] = element.group
params['label'] = element.label
vdim = element.vdims[0]
else:
vdim = 'Density'
data = element.array([0, 1]).T
xmin, xmax = self.p.x_range or element.range(0)
ymin, ymax = self.p.y_range or element.range(1)
if any(not isfinite(v) for v in (xmin, xmax)):
xmin, xmax = -0.5, 0.5
elif xmin == xmax:
xmin, xmax = xmin-0.5, xmax+0.5
if any(not isfinite(v) for v in (ymin, ymax)):
ymin, ymax = -0.5, 0.5
elif ymin == ymax:
ymin, ymax = ymin-0.5, ymax+0.5
data = data[:, isfinite(data).min(axis=0)] if data.shape[1] > 1 else np.empty((2, 0))
if data.shape[1] > 1:
kde = stats.gaussian_kde(data)
if self.p.bandwidth:
kde.set_bandwidth(self.p.bandwidth)
bw = kde.scotts_factor() * data.std(ddof=1)
if self.p.x_range:
xs = np.linspace(xmin, xmax, self.p.n_samples)
else:
xs = _kde_support((xmin, xmax), bw, self.p.n_samples, self.p.cut, xdim.range)
if self.p.y_range:
ys = np.linspace(ymin, ymax, self.p.n_samples)
else:
ys = _kde_support((ymin, ymax), bw, self.p.n_samples, self.p.cut, ydim.range)
xx, yy = cartesian_product([xs, ys], False)
positions = np.vstack([xx.ravel(), yy.ravel()])
f = np.reshape(kde(positions).T, xx.shape)
elif self.p.contours:
eltype = Polygons if self.p.filled else Contours
return eltype([], kdims=[xdim, ydim], vdims=[vdim])
else:
xs = np.linspace(xmin, xmax, self.p.n_samples)
ys = np.linspace(ymin, ymax, self.p.n_samples)
f = np.zeros((self.p.n_samples, self.p.n_samples))
img = Image((xs, ys, f.T), kdims=element.dimensions()[:2], vdims=[vdim], **params)
if self.p.contours:
cntr = contours(img, filled=self.p.filled, levels=self.p.levels)
return cntr.clone(cntr.data[1:], **params)
return img