"""
Module for accessor objects for viewable HoloViews objects.
"""
from __future__ import absolute_import, unicode_literals
import copy
import sys
from collections import OrderedDict
from types import FunctionType
import param
from param.parameterized import add_metaclass
from . import util
from .pprint import PrettyPrinter
class AccessorPipelineMeta(type):
def __new__(mcs, classname, bases, classdict):
if '__call__' in classdict:
classdict['__call__'] = mcs.pipelined(classdict['__call__'])
inst = type.__new__(mcs, classname, bases, classdict)
return inst
@classmethod
def pipelined(mcs, __call__):
def pipelined_call(*args, **kwargs):
from ..operation.element import method as method_op, factory
from .data import Dataset, MultiDimensionalMapping
inst = args[0]
if not hasattr(inst._obj, '_pipeline'):
# Wrapped object doesn't support the pipeline property
return __call__(*args, **kwargs)
inst_pipeline = copy.copy(inst._obj. _pipeline)
in_method = inst._obj._in_method
if not in_method:
inst._obj._in_method = True
try:
result = __call__(*args, **kwargs)
if not in_method:
init_op = factory.instance(
output_type=type(inst),
kwargs={'mode': getattr(inst, 'mode', None)},
)
call_op = method_op.instance(
input_type=type(inst),
method_name='__call__',
args=list(args[1:]),
kwargs=kwargs,
)
if isinstance(result, Dataset):
result._pipeline = inst_pipeline.instance(
operations=inst_pipeline.operations + [
init_op, call_op
],
output_type=type(result),
)
elif isinstance(result, MultiDimensionalMapping):
for key, element in result.items():
getitem_op = method_op.instance(
input_type=type(result),
method_name='__getitem__',
args=[key],
)
element._pipeline = inst_pipeline.instance(
operations=inst_pipeline.operations + [
init_op, call_op, getitem_op
],
output_type=type(result),
)
finally:
if not in_method:
inst._obj._in_method = False
return result
pipelined_call.__doc__ = __call__.__doc__
return pipelined_call
[docs]@add_metaclass(AccessorPipelineMeta)
class Apply(object):
"""
Utility to apply a function or operation to all viewable elements
inside the object.
"""
def __init__(self, obj, mode=None):
self._obj = obj
def __call__(self, apply_function, streams=[], link_inputs=True,
link_dataset=True, dynamic=None, per_element=False, **kwargs):
"""Applies a function to all (Nd)Overlay or Element objects.
Any keyword arguments are passed through to the function. If
keyword arguments are instance parameters, or streams are
supplied the returned object will dynamically update in
response to changes in those objects.
Args:
apply_function: A callable function
The function will be passed the return value of the
DynamicMap as the first argument and any supplied
stream values or keywords as additional keyword
arguments.
streams (list, optional): A list of Stream objects
The Stream objects can dynamically supply values which
will be passed to the function as keywords.
link_inputs (bool, optional): Whether to link the inputs
Determines whether Streams and Links attached to
original object will be inherited.
link_dataset (bool, optional): Whether to link the dataset
Determines whether the dataset will be inherited.
dynamic (bool, optional): Whether to make object dynamic
By default object is made dynamic if streams are
supplied, an instance parameter is supplied as a
keyword argument, or the supplied function is a
parameterized method.
per_element (bool, optional): Whether to apply per element
By default apply works on the leaf nodes, which
includes both elements and overlays. If set it will
apply directly to elements.
kwargs (dict, optional): Additional keyword arguments
Keyword arguments which will be supplied to the
function.
Returns:
A new object where the function was applied to all
contained (Nd)Overlay or Element objects.
"""
from .data import Dataset
from .dimension import ViewableElement
from .element import Element
from .spaces import HoloMap, DynamicMap
from ..util import Dynamic
if isinstance(self._obj, DynamicMap) and dynamic == False:
samples = tuple(d.values for d in self._obj.kdims)
if not all(samples):
raise ValueError('Applying a function to a DynamicMap '
'and setting dynamic=False is only '
'possible if key dimensions define '
'a discrete parameter space.')
if not len(samples):
return self._obj[samples]
return HoloMap(self._obj[samples]).apply(
apply_function, streams, link_inputs, link_dataset,
dynamic, per_element, **kwargs
)
if isinstance(apply_function, util.basestring):
args = kwargs.pop('_method_args', ())
method_name = apply_function
def apply_function(object, **kwargs):
method = getattr(object, method_name, None)
if method is None:
raise AttributeError('Applied method %s does not exist.'
'When declaring a method to apply '
'as a string ensure a corresponding '
'method exists on the object.' %
method_name)
return method(*args, **kwargs)
if 'panel' in sys.modules:
from panel.widgets.base import Widget
kwargs = {k: v.param.value if isinstance(v, Widget) else v
for k, v in kwargs.items()}
spec = Element if per_element else ViewableElement
applies = isinstance(self._obj, spec)
params = {p: val for p, val in kwargs.items()
if isinstance(val, param.Parameter)
and isinstance(val.owner, param.Parameterized)}
dependent_kws = any(
(isinstance(val, FunctionType) and hasattr(val, '_dinfo')) or
util.is_param_method(val, has_deps=True) for val in kwargs.values()
)
if dynamic is None:
is_dynamic = (bool(streams) or isinstance(self._obj, DynamicMap) or
util.is_param_method(apply_function, has_deps=True) or
params or dependent_kws)
else:
is_dynamic = dynamic
if (applies or isinstance(self._obj, HoloMap)) and is_dynamic:
return Dynamic(self._obj, operation=apply_function, streams=streams,
kwargs=kwargs, link_inputs=link_inputs,
link_dataset=link_dataset)
elif applies:
inner_kwargs = util.resolve_dependent_kwargs(kwargs)
if hasattr(apply_function, 'dynamic'):
inner_kwargs['dynamic'] = False
new_obj = apply_function(self._obj, **inner_kwargs)
if (link_dataset and isinstance(self._obj, Dataset) and
isinstance(new_obj, Dataset) and new_obj._dataset is None):
new_obj._dataset = self._obj.dataset
return new_obj
elif self._obj._deep_indexable:
mapped = []
for k, v in self._obj.data.items():
new_val = v.apply(apply_function, dynamic=dynamic, streams=streams,
link_inputs=link_inputs, link_dataset=link_dataset,
**kwargs)
if new_val is not None:
mapped.append((k, new_val))
return self._obj.clone(mapped, link=link_inputs)
[docs] def aggregate(self, dimensions=None, function=None, spreadfn=None, **kwargs):
"""Applies a aggregate function to all ViewableElements.
See :py:meth:`Dimensioned.aggregate` and :py:meth:`Apply.__call__`
for more information.
"""
kwargs['_method_args'] = (dimensions, function, spreadfn)
kwargs['per_element'] = True
return self.__call__('aggregate', **kwargs)
[docs] def opts(self, *args, **kwargs):
"""Applies options to all ViewableElement objects.
See :py:meth:`Dimensioned.opts` and :py:meth:`Apply.__call__`
for more information.
"""
from ..util.transform import dim
from ..streams import Params
params = {}
for arg in kwargs.values():
if isinstance(arg, dim):
params.update(arg.params)
streams = Params.from_params(params, watch_only=True)
kwargs['streams'] = kwargs.get('streams', []) + streams
kwargs['_method_args'] = args
return self.__call__('opts', **kwargs)
[docs] def reduce(self, dimensions=[], function=None, spreadfn=None, **kwargs):
"""Applies a reduce function to all ViewableElement objects.
See :py:meth:`Dimensioned.opts` and :py:meth:`Apply.__call__`
for more information.
"""
kwargs['_method_args'] = (dimensions, function, spreadfn)
kwargs['per_element'] = True
return self.__call__('reduce', **kwargs)
[docs] def sample(self, samples=[], bounds=None, **kwargs):
"""Samples element values at supplied coordinates.
See :py:meth:`Dataset.sample` and :py:meth:`Apply.__call__`
for more information.
"""
kwargs['_method_args'] = (samples, bounds)
kwargs['per_element'] = True
return self.__call__('sample', **kwargs)
[docs] def select(self, **kwargs):
"""Applies a selection to all ViewableElement objects.
See :py:meth:`Dimensioned.opts` and :py:meth:`Apply.__call__`
for more information.
"""
return self.__call__('select', **kwargs)
[docs]@add_metaclass(AccessorPipelineMeta)
class Redim(object):
"""
Utility that supports re-dimensioning any HoloViews object via the
redim method.
"""
def __init__(self, obj, mode=None):
self._obj = obj
# Can be 'dataset', 'dynamic' or None
self.mode = mode
def __str__(self):
return "<holoviews.core.dimension.redim method>"
[docs] @classmethod
def replace_dimensions(cls, dimensions, overrides):
"""Replaces dimensions in list with dictionary of overrides.
Args:
dimensions: List of dimensions
overrides: Dictionary of dimension specs indexed by name
Returns:
list: List of dimensions with replacements applied
"""
from .dimension import Dimension
replaced = []
for d in dimensions:
if d.name in overrides:
override = overrides[d.name]
elif d.label in overrides:
override = overrides[d.label]
else:
override = None
if override is None:
replaced.append(d)
elif isinstance(override, (util.basestring, tuple)):
replaced.append(d.clone(override))
elif isinstance(override, Dimension):
replaced.append(override)
elif isinstance(override, dict):
replaced.append(d.clone(override.get('name',None),
**{k:v for k,v in override.items() if k != 'name'}))
else:
raise ValueError('Dimension can only be overridden '
'with another dimension or a dictionary '
'of attributes')
return replaced
def _filter_cache(self, dmap, kdims):
"""
Returns a filtered version of the DynamicMap cache leaving only
keys consistently with the newly specified values
"""
filtered = []
for key, value in dmap.data.items():
if not any(kd.values and v not in kd.values for kd, v in zip(kdims, key)):
filtered.append((key, value))
return filtered
def _transform_dimension(self, kdims, vdims, dimension):
if dimension in kdims:
idx = kdims.index(dimension)
dimension = self._obj.kdims[idx]
elif dimension in vdims:
idx = vdims.index(dimension)
dimension = self._obj.vdims[idx]
return dimension
def _create_expression_transform(self, kdims, vdims, exclude=[]):
from .dimension import dimension_name
from ..util.transform import dim
def _transform_expression(expression):
if dimension_name(expression.dimension) in exclude:
dimension = expression.dimension
else:
dimension = self._transform_dimension(
kdims, vdims, expression.dimension
)
expression = expression.clone(dimension)
ops = []
for op in expression.ops:
new_op = dict(op)
new_args = []
for arg in op['args']:
if isinstance(arg, dim):
arg = _transform_expression(arg)
new_args.append(arg)
new_op['args'] = tuple(new_args)
new_kwargs = {}
for kw, kwarg in op['kwargs'].items():
if isinstance(kwarg, dim):
kwarg = _transform_expression(kwarg)
new_kwargs[kw] = kwarg
new_op['kwargs'] = new_kwargs
ops.append(new_op)
expression.ops = ops
return expression
return _transform_expression
def __call__(self, specs=None, **dimensions):
"""
Replace dimensions on the dataset and allows renaming
dimensions in the dataset. Dimension mapping should map
between the old dimension name and a dictionary of the new
attributes, a completely new dimension or a new string name.
"""
obj = self._obj
redimmed = obj
if obj._deep_indexable and self.mode != 'dataset':
deep_mapped = [(k, v.redim(specs, **dimensions))
for k, v in obj.items()]
redimmed = obj.clone(deep_mapped)
if specs is not None:
if not isinstance(specs, list):
specs = [specs]
matches = any(obj.matches(spec) for spec in specs)
if self.mode != 'dynamic' and not matches:
return redimmed
kdims = self.replace_dimensions(obj.kdims, dimensions)
vdims = self.replace_dimensions(obj.vdims, dimensions)
zipped_dims = zip(obj.kdims+obj.vdims, kdims+vdims)
renames = {pk.name: nk for pk, nk in zipped_dims if pk.name != nk.name}
if self.mode == 'dataset':
data = obj.data
if renames:
data = obj.interface.redim(obj, renames)
transform = self._create_expression_transform(kdims, vdims, list(renames.values()))
transforms = obj._transforms + [transform]
clone = obj.clone(data, kdims=kdims, vdims=vdims, transforms=transforms)
if self._obj.dimensions(label='name') == clone.dimensions(label='name'):
# Ensure that plot_id is inherited as long as dimension
# name does not change
clone._plot_id = self._obj._plot_id
return clone
if self.mode != 'dynamic':
return redimmed.clone(kdims=kdims, vdims=vdims)
from ..util import Dynamic
def dynamic_redim(obj, **dynkwargs):
return obj.redim(specs, **dimensions)
dmap = Dynamic(obj, streams=obj.streams, operation=dynamic_redim)
dmap.data = OrderedDict(self._filter_cache(redimmed, kdims))
with util.disable_constant(dmap):
dmap.kdims = kdims
dmap.vdims = vdims
return dmap
def _redim(self, name, specs, **dims):
dimensions = {k:{name:v} for k,v in dims.items()}
return self(specs, **dimensions)
def cyclic(self, specs=None, **values):
return self._redim('cyclic', specs, **values)
def value_format(self, specs=None, **values):
return self._redim('value_format', specs, **values)
def range(self, specs=None, **values):
return self._redim('range', specs, **values)
def label(self, specs=None, **values):
for k, v in values.items():
dim = self._obj.get_dimension(k)
if dim and dim.name != dim.label and dim.label != v:
raise ValueError('Cannot override an existing Dimension label')
return self._redim('label', specs, **values)
def soft_range(self, specs=None, **values):
return self._redim('soft_range', specs, **values)
def type(self, specs=None, **values):
return self._redim('type', specs, **values)
def step(self, specs=None, **values):
return self._redim('step', specs, **values)
def default(self, specs=None, **values):
return self._redim('default', specs, **values)
def unit(self, specs=None, **values):
return self._redim('unit', specs, **values)
def values(self, specs=None, **ranges):
return self._redim('values', specs, **ranges)
@add_metaclass(AccessorPipelineMeta)
class Opts(object):
def __init__(self, obj, mode=None):
self._mode = mode
self._obj = obj
def get(self, group=None, backend=None, defaults=True):
"""Returns the corresponding Options object.
Args:
group: The options group. Flattens across groups if None.
backend: Current backend if None otherwise chosen backend.
defaults: Whether to include default option values
Returns:
Options object associated with the object containing the
applied option keywords.
"""
from .options import Store, Options
keywords = {}
groups = Options._option_groups if group is None else [group]
backend = backend if backend else Store.current_backend
for group in groups:
optsobj = Store.lookup_options(backend, self._obj, group,
defaults=defaults)
keywords = dict(keywords, **optsobj.kwargs)
return Options(**keywords)
def __call__(self, *args, **kwargs):
"""Applies nested options definition.
Applies options on an object or nested group of objects in a
flat format. Unlike the .options method, .opts modifies the
options in place by default. If the options are to be set
directly on the object a simple format may be used, e.g.:
obj.opts(cmap='viridis', show_title=False)
If the object is nested the options must be qualified using
a type[.group][.label] specification, e.g.:
obj.opts('Image', cmap='viridis', show_title=False)
or using:
obj.opts({'Image': dict(cmap='viridis', show_title=False)})
Args:
*args: Sets of options to apply to object
Supports a number of formats including lists of Options
objects, a type[.group][.label] followed by a set of
keyword options to apply and a dictionary indexed by
type[.group][.label] specs.
backend (optional): Backend to apply options to
Defaults to current selected backend
clone (bool, optional): Whether to clone object
Options can be applied in place with clone=False
**kwargs: Keywords of options
Set of options to apply to the object
For backwards compatibility, this method also supports the
option group semantics now offered by the hv.opts.apply_groups
utility. This usage will be deprecated and for more
information see the apply_options_type docstring.
Returns:
Returns the object or a clone with the options applied
"""
if self._mode is None:
apply_groups, _, _ = util.deprecated_opts_signature(args, kwargs)
if apply_groups and util.config.future_deprecations:
msg = ("Calling the .opts method with options broken down by options "
"group (i.e. separate plot, style and norm groups) is deprecated. "
"Use the .options method converting to the simplified format "
"instead or use hv.opts.apply_groups for backward compatibility.")
param.main.warning(msg)
return self._dispatch_opts( *args, **kwargs)
def _dispatch_opts(self, *args, **kwargs):
if self._mode is None:
return self._base_opts(*args, **kwargs)
elif self._mode == 'holomap':
return self._holomap_opts(*args, **kwargs)
elif self._mode == 'dynamicmap':
return self._dynamicmap_opts(*args, **kwargs)
def clear(self, clone=False):
"""Clears any options applied to the object.
Args:
clone: Whether to return a cleared clone or clear inplace
Returns:
The object cleared of any options applied to it
"""
return self._obj.opts(clone=clone)
def info(self, show_defaults=False):
"""Prints a repr of the object including any applied options.
Args:
show_defaults: Whether to include default options
"""
pprinter = PrettyPrinter(show_options=True, show_defaults=show_defaults)
print(pprinter.pprint(self._obj))
def _holomap_opts(self, *args, **kwargs):
clone = kwargs.pop('clone', None)
apply_groups, _, _ = util.deprecated_opts_signature(args, kwargs)
data = OrderedDict([(k, v.opts(*args, **kwargs))
for k, v in self._obj.data.items()])
# By default do not clone in .opts method
if (apply_groups if clone is None else clone):
return self._obj.clone(data)
else:
self._obj.data = data
return self._obj
def _dynamicmap_opts(self, *args, **kwargs):
from ..util import Dynamic
clone = kwargs.get('clone', None)
apply_groups, _, _ = util.deprecated_opts_signature(args, kwargs)
# By default do not clone in .opts method
clone = (apply_groups if clone is None else clone)
obj = self._obj if clone else self._obj.clone()
dmap = Dynamic(obj, operation=lambda obj, **dynkwargs: obj.opts(*args, **kwargs),
streams=self._obj.streams, link_inputs=True)
if not clone:
with util.disable_constant(self._obj):
obj.callback = self._obj.callback
self._obj.callback = dmap.callback
dmap = self._obj
dmap.data = OrderedDict([(k, v.opts(*args, **kwargs))
for k, v in self._obj.data.items()])
return dmap
def _base_opts(self, *args, **kwargs):
from .options import Options
new_args = []
for arg in args:
if isinstance(arg, Options) and arg.key is None:
arg = arg(key=type(self._obj).__name__)
new_args.append(arg)
apply_groups, options, new_kwargs = util.deprecated_opts_signature(new_args, kwargs)
# By default do not clone in .opts method
clone = kwargs.get('clone', None)
if apply_groups:
from ..util import opts
if options is not None:
kwargs['options'] = options
return opts.apply_groups(self._obj, **dict(kwargs, **new_kwargs))
kwargs['clone'] = False if clone is None else clone
return self._obj.options(*new_args, **kwargs)